Weird & Wireless: Differences between lumens, lux, candelas and watts

Welcome again to the wonderful but sometimes weird world of wireless comms, written by Joel Young, CTO of Digi International.When I go to the store to buy light bulbs, I keep running into all of these different measurements. What is the difference between lumens, lux, candelas and watts and why should I care?

cc-candle.jpgWelcome again to the wonderful but sometimes weird world of wireless comms, written by Joel Young, CTO of Digi International.When I go to the store to buy light bulbs, I keep running into all of these different measurements. What is the difference between lumens, lux, candelas and watts and why should I care?

Different from the rest of the electromagnetic vocabulary, the most important thing to remember about the terminology around visible light is that it is a complete human construct related to our own perceptions.

In other words, the notion of visible light and associated colour only exist because we have eyes, i.e. antennas that tune into these frequencies of the electromagnetic spectrum. Now, once we accept this, the notion of all these units starts to make sense.

First, we need to start with the unit called the candela. You probably notice the similarity between “candela” and “candle.” Effectively one candela is the amount of visible light emitted by one candle in a given direction.As you might expect, this was really important in the days before electricity when rooms were lit by candle light. It is often referred to as luminous intensity.

You can see that would be a very useful measure if you were planning a dinner party during medieval times and you wanted to estimate how much light you needed to light the banquet hall and to subsequently tell your local candle maker how many candles to make.

In addition, there is a precise definition of light frequency spread around the colour green that goes with it – for now I won’t attempt to confuse with that aspect so just think of it as good old fashioned visible light.

Unfortunately, you don’t see the unit candela used much anymore. Instead, if you go buy a light bulb, you will no doubt find the number of lumens listed on the package next to the number of watts.

The candela is a unit that describes light in a given direction, but doesn’t necessarily take into account the spread factor or anything else. The lumen was created as the measure of total luminous power (i.e. visible light power) as defined by our set of ideal human eyes. Somewhere along the way the switch was made to use the unit lumen, presumably because it maps nicely to that other unit of raw power that we know so well, the watt.

However, I must admit, since they are just units related by a unit-less constant, it really doesn’t matter.

One lumen is defined as one candela-steradian, or the amount of light power needed to send 1 candela of light in all directions (isotropically).

For those of you that don’t remember your geometry, steradians are used to describe the surface area of the unit sphere (4 ?) much like radians are used to in describing the circumference of a unit circle (2 ?).

So to translate between lumens and candelas, just multiply by 4 ?. Hence 1 candela = 12.6 or 4 ? lumens.

The lumen is nice because it is relatively easy to quantify in the same way that we described RF transmissions by equivalent isotropic radiation, otherwise, it really doesn’t matter. With this type of measure we can decide how much total visible light, as we humans think of it, is output per unit of time.

Now, in order to determine how much light we need for a given area, however, we need to be able to calculate the light density. For this we us the unit lux. A lux describes a density of 1 lumen per square meter (lm/m2).

So if I wanted to illuminate 2 square meters of wall at 1 lux, I would need 2 lumens of light.

Finally we return to our friend the watt. We know that the watt describes total power, no matter what form it emerges. So take our traditional 60 watt incandescent light bulb. We all know from experience that these get really hot, too hot to touch by the human hand when turned on.

The web site states that the surface temperature of a 60 watt light bulb at room temperature to be 260 degrees F (127 degrees C). So we know that a lot of energy is wasted on heat instead of visible light. This same 60 watt bulb emits about 520 lumens.

Hence we introduce the final term of the day, “luminous efficacy.” This is defines how good the light bulb is at putting out visible light versus wasted heat.

Using the numbers above, the luminous efficacy of the 60 watt incandescent bulb is about 8.67 lumens per watt – not very good and certainly not very green.

(Picture – First Advent and first candle is lit by Per Ola Wiberg (Powi), under Creative Commons attribution licence)

joel-young-2009-150x150.jpgJoel Young, VP of Research and Development and CTO at Digi International, has more than 22 years of experience in developing and managing data and voice communications. He joined Digi International in June 2000 and in his current role he is responsible for research and development of all of Digi’s core products.

Prior to joining Digi, Joel was VP of Sales & Marketing at Transcrypt International where he was responsible for sales, marketing, and product development for all information security products. During his tenure at Transcrypt, he also served as VP of Product Development and VP of Engineering where he was responsible for engineering, research and product development for wireless communications products, cellular telephony, wireline telephony and land mobile radio, data security and specialized digital radio products.

He also served as District Manager for AT&T Business Communications Services where he was responsible for the creation and implementation of voice processing and network database strategies, including deploying new voice processing platforms into the AT&T switched network for private network and other outbound calling services.


One comment

  1. Thanks Joel for the information in this article. It’s great to see the direct correlation between the SI units.

Leave a Reply

Your email address will not be published. Required fields are marked *